Pair-wise Separable Quadratic Programming for Constrained Time-varying Regression Estimation
نویسنده
چکیده
Estimation of time-varying regression model constrained at each time moment by linear inequalities is a natural statistical formulation of a wide class of nonstationary signal processing problems. The presence of linear constraints turns the originally quadratic three-diagonal problem of minimizing the residual squares sum, which is solvable by the linear Kalman-Bucy filtration-smoothing procedure, into that of quadratic programming, which inevitably leads to the necessity of applying much more complicated nonlinear signal processing techniques. However, the threediagonal kind of the quadratic objective function, on one hand, and the specificity of inequality constraints imposed individually upon each vector variable in the sequence of unknown regression coefficients, on the other, essentially simplify the resulting quadratic programming problem in comparison with its standard form. We call problems of such a kind pair-wise separable quadratic programming problem. Two algorithms of nonstationary regression estimation considered in this paper are built as those of pairwise separable quadratic programming and have linear computational complexity in contrast to polynomial complexity of the quadratic programming problem of general kind. The asymptotically strict iterative algorithm is based on the traditional steepest descent method of quadratic programming, whereas the fast approximate algorithm consists in a single run of a special version of the Kalman-Bucy filter-smoother.
منابع مشابه
Cross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation
Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...
متن کاملFuzzy Linear Programming Method for Deriving Priorities in the Fuzzy Analytic Hierarchy Process
There are various methods for obtaining the preference vector of pair-wise comparison matrix factors. These methods can be employed when the elements of pair-wise comparison matrix are crisp while they are inefficient for fuzzy elements of pair-wise comparison matrix. In this paper, a method is proposed by which the preference vector of pair-wise comparison matrix elements can be obtained even ...
متن کاملOptimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
متن کاملAlgorithms for Solving Nonconvex Block Constrained Quadratic Problems
Non-convex Quadratically Constrained Quadratic Programs with block-separable convex constraints are generally NP-hard. These problems appear in many applications such as estimation and control, complex unimodular programming, and MAX-CUT type problems. SDP relaxation is the best known upper bound approximation for this problem. We suggest the Block Optimal Ascent (BOA) algorithm to obtain lower...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کامل